Journal of Organometallic Chemistry, 394 (1990) C27-C30 Elsevier Sequoia S.A., Lausanne JOM 21037PC

Preliminary communication

Addition of electrophiles to metalladiborane anions $[M(CO)_4(\eta^2-B_2H_5)]^-$ (Fe, Ru, Os) *

Tim J. Coffy and Sheldon G. Shore *

Department of Chemistry, The Ohio State University, Columbus, OH 43210 (U.S.A.) (Received April 13th, 1990)

Abstract

Addition of the electrophiles $[CH_3]^+$, H^+ , $[(PPh_3)Au]^+$ to the metalladiborane anions $[M(CO)_4(\eta^2-B_2H_5)]^-$ (M = Fe, Ru, Os) has been investigated. Addition occurs at the metal center. The complexes $CH_3Os(CO)_4(\eta^2-B_2H_5)$, $HM(CO)_4(\eta^2-B_2H_5)$ (M = Ru, Os), and $(PPh_3)AuM(CO)_4(\eta^2-B_2H_5)$ (M = Fe, Ru, Os) have been formed. NMR spectra of $HM(CO)_4(\eta^2-B_2H_5)$ indicate that the H atom on the metal is *cis* to the B_2H_5 ligand. Relative stabilities of the complexes $LM(CO)_4(\eta^2-B_2H_5)$ are in the order M = Os > Ru > Fe for a given electrophile and the order L = $(Ph_3P)Au > H$ for a given metal.

We recently reported on metalladiborane anions of the type $[M(CO)_4(\eta^2-B_2H_5)]^-$ (M = Fe, Ru, Os) [1]. Their structures are considered to be like that of diborane(6), with a bridge proton replaced by an $M(CO)_4$ unit. They are analogues of metalolefin complexes in which $[B_2H_5]^-$ is isolobal with C_2H_4 [2]. Bonding can be viewed in the Dewar Duncanson Chatt [3] sense as a mixing of a π bonding orbital of $[B_2H_5]^-$ with a vacant metal orbital of $M(CO)_4$, accompanied by possible back-bonding from a filled metal orbital to the π^* orbital of $[B_2H_5]^-$. The Mössbauer spectrum of $[Fe(CO)_4(\eta^2-B_2H_5)]^-$ is consistent with this type of bonding in that it suggests the presence of Fe(0) in the complex [1]. Metal-boron bonding in the related complex $Fe(\eta^5-C_5H_5)(CO)_2(\eta^2-B_2H_5)$, analyzed by photoelectron spectroscopy and Fenske-Hall analysis, indicates that the primary mode of bonding appears to be donation of electron density from the boron-boron bond to the vacant iron orbital, with little indication of back electron donation [4].

In a continuing study of metalladiboranes, reactions of $[M(CO)_4(\eta^2-B_2H_5)]^$ with electrophilic reagents have been examined. It was of interest to determine if the metal center is sufficiently basic to add the reagents $[CH_3]^+$, H^+ , and $[(Ph_3P)Au]^+$ or if the electrophile would displace $M(CO)_4$ by adding to $[B_2H_5]^-$

^{*} This work is dedicated to Professor F.G.A. Stone, a distinguished boron chemist as well as organometallic chemist.

Fig. 1. Boron-11 NMR spectra of (PPh₃)AuOs(CO)₄(η^2 -B₂H₅).

Three types of reactions were studied:

K[Os(CO)₄(
$$\eta^2$$
-B₂H₅)] + [(CH₃)₃O][BF₄] →
CH₃Os(CO)₄(η^2 -B₂H₅) + K[BF₄] + (CH₃)₂O

$$K[Os(CO)_4(\eta^2 - B_2H_5)] + HCl \rightarrow HOs(CO)_4(\eta^2 - B_2H_5) + KCl$$
(2)

$$K[Os(CO)_4(\eta^2 - B_2H_5)] + (Ph_3P)AuCl \rightarrow (Ph_3P)AuOs(CO)_4(\eta^2 - B_2H_5) + KCl \quad (3)$$

Based upon NMR spectra, the electrophile adds to the metal and the B_2H_5 unit remains intact in these reaction. Proton NMR spectra $[5^*-7^*]$ of these complexes reveal the presence of a bridging hydrogen, terminal hydrogens on boron, and for $CH_3Os(CO)_4(\eta^2-B_2H_5)$ and $HOs(CO)_4(\eta^2-B_2H_5)$ the CH_3 hydrogens and the OsH hydrogen are also revealed. Boron-11 NMR spectra of $CH_3Os(CO)_4(\eta^2-B_2H_5)$ [5*] and $HOs(CO)_4(\eta^2-B_2H_5)$ [6*] display the characteristic triplet of doublets arising from coupling of terminal and bridge hydrogens with boron. Temperature-dependent ¹¹B NMR spectra of $(Ph_3P)AuOs(CO)_4(\eta^2-B_2H_5)$ [7*] (Fig. 1) at 60 °C reveal a well-resolved triplet due to terminal hydrogen-boron coupling. Rapid decomposition of the sample at higher temperatures prevented observation of bridge hydrogen-boron coupling which is expected to be resolved at higher temperatures. The ¹³C NMR spectrum of $HOs(CO)_4(\eta^2-B_2H_5)$ [6*] consists of three signals in the ratio 1(doublet): 2:1, which indicate that the hydrogen bound to the metal is *cis* to the B_2H_5 ligand. A proposed structure is shown in Fig. 2.

Stabilities of these complexes, $LOs(CO)_4(\eta^2-B_2H_5)$, at room temperature in vacuum are in the order $L = (PPh_3)Au > H > CH_3$. The gold complex decomposes very slowly at room temperature to give off PPh₃BH₃. The protonation product is

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 2. Proposed structure of HM(CO)₄(η^2 -B₂H₅) (M = Os, Ru).

less stable, giving off B_2H_6 and H_2 , but it can be handled at room temperature for several hours without significant decomposition. The methylation derivative is completely decomposed in about an hour at room temperature, evolving B_2H_6 and CH_4 .

For the preparation of $CH_3Os(CO)_4(\eta^2-B_2H_5)$, 102 mg (0.277 mmol) of $K[Os(CO)_4(\eta^2-B_2H_5)]$ and 43 mg of $[(CH_3)_3O][BF_4]$ (0.290 mmol) in 2 mL of dry $(CH_3)_2O$ were allowed to react for 4 h at $-78^{\circ}C$. After pumping away $(CH_3)_2O$ at $-78^{\circ}C$, $CH_3Os(CO)_4(\eta^2-B_2H_5)$ was extracted with CH_2Cl_2 , which was then pumped away at $-65^{\circ}C$, leaving behind the product $CH_3Os(CO)_4(\eta^2-B_2H_5)$ as a yellow oil.

For the preparation of $HOs(CO)_4(\eta^2-B_2H_5)$, 17 mg (0.291 mmol) of $K[Os(CO)_4(\eta^2-B_2H_5)]$ and 0.538 mmol of HCl reacted rapidly (less than 1 min) in 1 mL of dry CH_2Cl_2 at $-78^{\circ}C$. Excess HCl was pumped away at $-78^{\circ}C$, the reaction mixture was filtered and then the product, $HOs(CO)_4(\eta^2-B_2H_5)$, was isolated as a yellow oil by pumping away the CH_2Cl_2 at $-65^{\circ}C$.

In the preparation of $(Ph_3P)AuOs(CO)_4(\eta^2-B_2H_5)$, 5 mL of dry THF was condensed onto a mixture of 110 mg (0.298 mmol) of K[Os(CO)_4(\eta^2-B_2H_5)] and 134 mmol (0.274 mmol) of $(Ph_3P)AuCl$ at -78° C. The mixture was warmed to 0°C and stirred for 15 min. Solvent was then pumped away and the product was extracted with CH₂Cl₂. Removal of solvent from the precipitate gave solid yellowbrown $(Ph_3P)AuOs(CO)_4(\eta^2-B_2H_5)$, 162 mg (75% yield based on $(Ph_3P)AuCl$). Anal. Calcd for C₂₂H₂AuB₂O₄OsP: C, 33.53; H, 2.56. Found: C, 33.43; H, 2.39.

Reactions like (2) and (3) were also studied employing K[Fe(CO)₄(η^2 -B₂H₅)] and K[Ru(CO)₄(η^2 -B₂H₅)]. Protonation of [Fe(CO)₄(η^2 -B₂H₅)]⁻ gave an adduct which decomposed above $-120 \,^{\circ}$ C to give B₂H₆ and Fe(CO)₅. Because of its instability the site of protonation could not be determined. However, NMR evidence was obtained for the formation of HRu(CO)₄(η^2 -B₂H₅) [8*], (Ph₃P)AuFe(CO)₄(η^2 -B₂H₅) [9*], and (Ph₃P)AuRu(CO)₄(η^2 -B₂H₅) [10*]. The ¹³C NMR spectrum of HRu(CO)₄(η^2 -B₂H₅) indicates a structure like that assigned to HOs(CO)₄(η^2 -B₂H₅) (Fig. 2). The complex HRu(CO)₄(η^2 -B₂H₅) decomposes slowly at $-80 \,^{\circ}$ C. Complexes (Ph₃P)AuFe(CO)₄(η^2 -B₂H₅) and (Ph₃P)AuRu(CO)₄(η^2 -B₂H₅) are completely decomposed at room temperature in 15 min and 2 h, respectively. The relative stabilites of electrophile adducts LM(CO)₄(η^2 -B₂H₅) are in the order M = Os > Ru > Fe for a given electrophile and the order L = (Ph₃P)Au > H for a given metal.

Acknowledgement. We thank the National Science Foundation for support of this work through Grant CHE 88-00515. NMR spectra were obtained at The Ohio State University Campus Chemical Instrument Center (funded in part by NSF Grant 79-10019 and NIH Grant 1 S10 PRO14512801A).

References and notes

- 1 T.J. Coffy, G. Medford, J. Plotkin, G.J. Long, J.C. Hoffman and S.G. Shore, Organometallics, 8 (1989) 2404.
- 2 R. Hoffman, Science, 211 (1981) 995.
- 3 (a) M.J.S. Dewar, Bull. Soc. Chim. Fr. 18 (1951) C71; (b) J. Chatt and L.A. Duncanson, J. Chem. Soc., (1953) 2939.
- 4 R.L. DeKock, P. Deshmukh, T.P. Fehlner, C.E. Housecroft, J.S. Plotkin and S.G. Shore, J. Am. Chem. Soc., 105 (1983) 815.
- 5 NMR spectra $CH_3O_3(CO)_4(\eta^2-B_2H_5)$ (CD_2Cl_2): $\delta^{11}H$ (δ Si(CH_3)₄ = 0.00 ppm) 2.80 (4BH, quartet J(BH) = 105 Hz), 0.324 (3CH), -5.51 (1BHB) ppm. $\delta^{11}B(\delta Et_2OBF_3 = 0.00 ppm) 8.0$ (triplet of doublets, J(BH) = 105 Hz, J(BHB) = 26 Hz) ppm.
- 6 NMR spectra HOs(CO)₄(η^2 -B₂H₅) (CD₂Cl₂): δ ¹H 2.50 (4BH, quartet J(BH) = 104 Hz), -6.09 (1BHB), -8.56 (10sH) ppm. ¹¹B 14.4 (triplet of doublets, J(BH) = 101 Hz, J(BHB) = 32 Hz) ppm. δ ¹³C (δ Si(¹³CH₃)₄ = 0.00 ppm) 171.6 (doublet 1CH), J(CH) = 9.0 Hz), 169.0 (2C), 167.5 (1C) ppm.
- 7 NMR spectra (Ph₃P)AuOs(CO)₄(η^2 -B₂H₅) (CDCl₃, 60 ° C): δ^{-1} H 7.5-7.3 (multiplet PPh₃), 2.31 (4BH, quartet J(BH) = 106 Hz), -3.99 (1BHB) ppm. ¹¹B 20.0 (triplet J(BH) = 104 Hz) ppm.
- 8 NMR spectra HRu(CO)₄(η^2 -B₂H₅) (CD₂Cl₂): δ^{1} H (-70°C) 2.22 (4BH, J(BH) = 104 Hz), -5.12 (1BHB), -7.51 (1RuH). δ^{11} B (-10°C) -14.4 (triplet of doublets, J(BH) = 104 Hz, J(BHB) = 32 Hz). δ^{13} C (-80°C) 189.9 (doublet, J(CH) = 17.7 Hz), 188.1 (2C), 186.1 (1C) ppm.
- 9 NMR spectra (Ph₃P)AuFe(CO)₄(η^2 -B₂H₅) (CDCl₃, 25°C): $\delta^{-11}B 12.1$ (poorly resolved triplet) ppm.
- 10 NMR spectra (Ph₃P)AuRu(CO)₄(η^2 -B₂H₅) (CDCl₃, 25°C): δ^{-1} H 7.7–7.5 (multiplet PPh₃), 2.49 (poorly resolved quartet 2BH), -3.99 (1BHB) ppm. ¹¹B 14.9 (poorly resolved triplet) ppm.